
Skyplane: Optimizing Transfer Cost and Throughput Using Cloud-Aware Overlays

Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and Ion Stoica
University of California, Berkeley

Abstract
Cloud applications are increasingly distributing data across
multiple regions and cloud providers. Unfortunately, wide-
area bulk data transfers are often slow, bottlenecking appli-
cations. We demonstrate that it is possible to significantly
improve inter-region cloud bulk transfer throughput by adapt-
ing network overlays to the cloud setting—that is, by routing
data through indirect paths at the application layer. However,
directly applying network overlays in this setting can result
in unacceptable increases in cloud egress prices. We present
Skyplane, a system for bulk data transfer between cloud object
stores that uses cloud-aware network overlays to optimally
navigate the trade-off between price and performance. Sky-
plane’s planner uses mixed-integer linear programming to
determine the optimal overlay path and resource allocation
for data transfer, subject to user-provided constraints on price
or performance. Skyplane outperforms public cloud transfer
services by up to 4.6× for transfers within one cloud and by
up to 5.0× across clouds.

1 Introduction

Increasingly, cloud applications transfer data across datacen-
ter boundaries, both across multiple regions within a cloud
provider (multi-region) and across multiple cloud providers
(multi-cloud). This is in part due to privacy regulations, the
availability of specialized hardware, and the desire to prevent
vendor lock-in. In a recent survey [26], more than 86% of 727
respondents had adopted a multi-cloud strategy across diverse
workloads. Thus, support for fast, cross-cloud bulk transfers
is increasingly important.

Applications transfer data between datacenters for batch
processing (e.g. ETL [9], Geo-Distributed Analytics [54]),
and production serving (e.g. search indices [34]). Extensive
prior work optimizes the throughput of bulk data transfers
between datacenters within application-defined minimum per-
formance constraints [34, 36, 38, 64]. All major clouds offer
services for bulk transfers such as AWS DataSync [5], Azure
AzCopy [22], and GCP Storage Transfer Service [31].

From the perspective of a cloud customer, transfer through-
put and cost (price) are the two important metrics of transfers
in the cloud. Thus we ask how can we optimize network cost
and throughput for cloud bulk transfers? We study this ques-
tion in the context of designing and implementing Skyplane,
an open-source cloud object transfer system.

A seemingly natural approach is to optimize the routing
protocols in cloud providers internal networks to support
higher-throughput data transfers. Unfortunately, this is not
feasible for two reasons. First, rearchitecting the IP layer rout-
ing protocol to optimize for high-throughput bulk transfer
could be negatively impact other applications that are sensi-
tive to network latency. Second, cloud providers lack a strong
incentive to optimize data transfer to other clouds. Indeed,
AWS DataSync [5], AzCopy [22], GCP Storage Transfer [31],
AWS Snowball [62], and Azure Data Box Disk [12], all sup-
port data transfer into, but not out of, their respective clouds.
Improvements to cross-cloud peering must be achieved with
the cooperation of both the source and destination providers.

Skyplane’s key observation is that we can instead identify
overlay paths—paths that send data via intermediate regions—
that are faster than the direct path. The throughput of the
direct path from Azure’s Central Canada region to GCP’s
asia-northeast1 region is 6.2 Gbps. Instead, Skyplane can
route the transfer via an intermediate stop at Azure’s US
West 2 with a throughput of 12.4 Gbps for a 2.0× speedup
(Fig. 1). Crucially, this can be implemented on top of the
cloud providers’ services without their explicit buy-in.

We are not the first to propose the use of overlay networks
on the public Internet [8]. However, these techniques ignore
two key considerations of public clouds: price and elasticity.

First, the highest-bandwidth overlay path may have an un-
acceptably high price. Cloud providers charge for data egress
separately for each hop along the overlay path. To reduce
the cost of the overlay, it is essential to transfer data along
cheap paths to trade off price and performance. For example,
in Fig. 1, one can achieve 13.9 Gbps by instead using Azure’s
East Japan region as the relay, but the cost would be 1.9×
that of transferring data directly. In contrast, using Azure’s



Skyplane
Planner

Desired
throughput

Number of VMs

Number of connections

Overlay paths

Data
Plane

Direct: 6.17 Gb/s for $0.0875/GB

Indirect via Azure East Japan: 13.87 Gb/s for $0.170/GB

Indirect via Azure West US 2: 
12.38 Gb/s for $0.1075/GB

Desired
price

Figure 1: Cloud-aware overlays: Skyplane optimally trans-
fers across cloud regions and providers subject to the user’s
cost and throughput requirements. Skyplane finds the visual-
ized overlay path from Azure’s Central Canada region to
GCP’s asia-northeast1, which is 2.0× faster but just 1.2×
higher in price than the direct path.

West US 2 region has only a 1.2× cost overhead with simi-
lar performance. Thus, Skyplane operates in a richer problem
space than traditional application-level routing—one where
cloud instance and cloud egress fees are significant.

Second, whereas the bandwidth between two nodes in a
traditional network overlay [8] is considered “fixed,” in Sky-
plane’s setting it depends on elasticity—the ability to allocate
more resources at each cloud region. For example, one can
increase the capacity of any overlay path by simply allocating
more VM instances in each cloud region. There are a limited
number of physical machines at each cloud region, which
cloud providers pass on to users in the form of instance limits.
An overlay enables improved throughput beyond this limit.
Thus, Skyplane operates in a richer solution space than tradi-
tional application-level routing—one where we must choose
the number of VMs to use as relays due to cloud elasticity.

Skyplane addresses both price and elasticity, empowering
users to navigate the trade-off between price and performance
while leveraging the elasticity of cloud resources. Users can
ask Skyplane to maximize bandwidth subject to a cost ceiling,
or minimize cost subject to a bandwidth floor.

At the heart of Skyplane is a planner that computes a data
transfer plan, subject to the user’s constraints, that specifies the
overlay path to use and amount of cloud resources to allocate
along that path. Price and elasticity make it challenging to
compute the plan. Our insight is that, with some care, planning
can be formulated as linear constraints. Thus, Skyplane’s
planner can discover the optimal plan by solving a mixed-
integer linear program (MILP), or closely approximate the
optimal plan by solving a relaxed linear program (LP). Both
can be accomplished using a fast, off-the-shelf solver.

Our Skyplane prototype1outperforms AWS DataSync by
up to 4.6× and GCP Storage Transfer by up to 5.0×. Skyplane
also outperforms academic baselines such as RON by 34%
while reducing cost by 62%.

1https://github.com/skyplane-project/skyplane

2 Background

Network overlays In the early 2000s, network overlays
emerged as a technique for application-level routing with-
out the participation of underlying network providers. These
network overlays can be designed to improve performance
or reliability. Notable network overlays include Chord [60],
Resilient Overlay Networks (RON) [8], Bullet [41], Baidu
BDS [65] and Akamai’s backbone [52, 58].

Although ISPs may have broad visibility into their net-
works, the metrics that ISPs use to select routes may not align
with user preferences. Wide-area networks today do not allow
specification of alternative routing preferences while network
overlays provide applications a mechanism to control routing
decisions. For example, Akamai uses a network overlay to
reduce the latency of CDN misses while RON routes around
network outages via an unaffected intermediate host.

RON is implemented by periodically measuring network
performance via probes embedded in a fixed set of routers.
When path outages occur, RON selects an intermediate relay
router to circumvent the outage. This intermediate router
is selected to have low packet loss or latency to/from the
client and server. Optionally, RON can use a model of TCP
Reno’s throughput [53] to select intermediate routers. RON
will generally select only a single intermediate node.

Wide-area networking in the cloud From the perspective
of cloud customers, the cloud is elastic—additional resources
can be allocated on demand. For example, an overloaded
cloud application can leverage the cloud’s elasticity by allo-
cating additional VM instances. However, the physical reality
of the cloud is that there are only finite resources at each
region. Therefore, cloud providers impose service limits on
their customers for resources such as VMs.

Each VM’s network bandwidth is throttled according to its
instance type. For example, an AWS m5.8xlarge instance
can use at most 10 Gbps of network bandwidth, and an Azure
Standard_D32_v5 instance can use at most 16 Gbps of net-
work bandwidth. Furthermore, only some of the available
bandwidth can be used for egress traffic to another cloud
provider. The policies differ by cloud provider. AWS limits
VM egress bandwidth to the larger of 5 Gbps or 50% of to-
tal bandwidth [4], GCP limits VM egress bandwidth to any
public IP address to 7 Gbps [30], and Microsoft Azure has
no egress limit beyond the total bandwidth limit for a VM.
Of course, the actual achievable TCP network bandwidth is
subject to congestion control which may be less than the limit.

Cloud egress pricing Cloud providers charge egress prices
for network traffic leaving a cloud region. Importantly, egress
prices are assessed based on the volume of data transferred,
not the rate at which it is transferred. Transferring a file at
10 Mbps or at 10 Gbps will result in the same egress charge.
Egress charges introduce asymmetry in billing—there is no
corresponding ingress charge for transfers into a cloud.

https://github.com/skyplane-project/skyplane


For intra-cloud transfers (i.e., transfers between two regions
or zones in the same cloud), transfers between geographi-
cally distant endpoints are priced more than transfers between
nearby endpoints. In contrast, inter-cloud transfers (i.e., trans-
fers between two cloud providers) are billed at the same rate
regardless of the transfer’s geographic distance. For example,
the egress price from a single Azure region is billed at the
same rate for any destination outside of Azure, including any
region in AWS or GCP [6, 29, 51].

Egress prices typically dominate the cost of a bulk transfers.
For example, if a VM sends data at a rate of 1 Gbps for an
hour on AWS with an Internet egress price of $0.09/GB, the
total egress charge will total $40.50, which far exceeds the
VM price of $1.50 (for m5.8xlarge) [6].

Cloud object storage AWS, Azure, and GCP provide object
storage APIs that allow customers to save data attached to a
string key. Data is stored immutably and therefore any updates
require writing a new version. Unlike POSIX file systems,
object stores do not provide atomic metadata operations (e.g.,
rename). Consistency models vary across providers. Cloud
object stores store copies of a blob on multiple machines to
improve availability and durability. Large objects support con-
current writes via sharding. Read throughput of a single shard
may be limited by the provider (e.g. 60 MB/s for Azure [13]).

3 Overview of Skyplane

Skyplane allows applications to efficiently transfer large ob-
jects from an object store in one region to an object store in
another cloud region or provider. To use Skyplane, the user
installs the Skyplane client locally and configures it with ac-
cess to cloud provider-supplied credentials. Then, the user
submits a job, together with a constraint on price or band-
width. The job specifies which objects to transfer, the source
cloud provider and region, and the destination cloud provider
and region. The constraint can have one of two forms: it can
ask Skyplane to optimize either bandwidth subject to a price
ceiling, or price subject to a bandwidth floor.

Skyplane itself comprises a planner (Fig. 1, bottom) and a
data plane (Fig. 2). Given the user’s job and constraint, the
planner produces an optimal data transfer plan to complete the
job subject to the constraint. The planner relies on a profile
of the network throughput between different cloud regions.
The data plane is responsible for executing the data transfer
plan: allocating cloud resources (e.g., VMs), transferring data
between them, and interacting with object stores.

3.1 Overlay formulation in Skyplane’s planner
Suppose the user needs to transfer an object from a source
cloud region, A, to a destination cloud region, B. A naïve ob-
ject transfer system might spawn VMs in regions A and B,
and transfer data via a TCP connection between the two VMs.

VMs in Src.
Region

VMs in
Dest.
Region

VMs in Relay
Region B

VMs in Relay
Region A

Cloud #1 (e.g., AWS) Cloud #2 (e.g., Azure)

Skyplane
Client

Object
Store

Object
Store

Data
Transfer
Plan

Figure 2: Skyplane splits an example data transfer over three
paths: the direct path, and two indirect paths. Dashed lines
indicate control orchestration (e.g., for spawning VMs) and
solid lines depict the flow of object data.

Skyplane improves performance compared to this baseline by
applying principles from overlay networks [8]. For example,
Skyplane may identify a third cloud region, C, and transfer
data from A to B via C. This is accomplished at the appli-
cation layer; Skyplane will spawn a VM in region C, set up
TCP connections from A to C and from C to B. We refer to
intermediate regions like C as relay regions.

The baseline approach (A → B) routes data along the “di-
rect path,” since it uses the default path provided by the Inter-
net. However, Skyplane (A →C → B) routes data along the an
“indirect path,” that may not be on the Internet-provided de-
fault path. An indirect path may use multiple relays although
a single relay is usually sufficient.

A key difference between Skyplane and classical over-
lay networks is that Skyplane takes price into account when
choosing the overlay path to use for a job. Concretely, Sky-
plane’s planner uses a price grid and a throughput grid to
determine which indirect path to use. The price grid specifies
the price of transferring data between each pair of cloud re-
gions, in each direction. We computed the price grid based
on information on the cloud providers’ websites and from
querying the cloud APIs. The throughput grid is collected by
measuring the network, as we explain in the next subsection.

Note that throughput grid measurements are made using
TCP connections, subject to TCP congestion control. Thus,
the throughput grid measures the bandwidth available to a
single user for transferring data, accounting for cross-traffic
from other users’ flows. We assume a high degree of statistical
multiplexing in wide-area network traffic—in other words,
that the bandwidth consumed by a single user’s bulk transfer
is negligible compared to the total available inter-region band-
width. This allows a Skyplane user to compute a data transfer
plan without regard to other users’ bulk transfers using Sky-
plane or other bulk transfer tools—all cross traffic from other
users is assumed to be accounted for in the throughput grid.



Figure 3: Intra-cloud vs. inter-cloud links: Inter-cloud links are consistently slower than intra-cloud links for network routes
from Azure and GCP. Service limits are shown with a dashed line; GCP throttles inter-cloud egress to 7 Gbps while AWS
throttles all egress traffic to 5 Gbps.

Th
ro
ug
hp
ut
(G
bp
s)

5.0

4.0

3.0

2.0

Time
2hr 4hr 6hr 8hr 10hr 12hr 14hr 16hr 18hr

AWS us-west-2

Th
ro
ug
hp
ut
(G
bp
s)

6.0

4.0

2.0

Time
2hr 4hr 6hr 8hr 10hr 12hr 14hr 16hr 18hr

GCP us-east1-b

Figure 4: Stability of egress flows over 18 hour period: Continuous probes of cloud networks over one day reveal that routes
from AWS have stable throughput over time. Paths between GCP regions are noisy but have a consistent mean.

As we show in the next subsection, the bandwidth of inter-
region TCP connections is relatively stable in the short term,
validating our assumption of high statistical multiplexing.

3.2 Profiling cloud networks
The planner relies on a profile of the network throughput
between pairs of cloud regions. We collected a throughput
grid by measuring the TCP goodput between each region pair
using iperf3. In total, computing this profile cost approxi-
mately $4000 in egress charges.

Fig. 3 displays the relationship between network latency
and throughput for profiling routes originating from GCP
and Azure for our measured throughput grid. For GCP, we
leverage internal IPs which improve intra-cloud bandwidth.
For both GCP and Azure, intra-cloud routes had lower tail
RTTs than inter-cloud routes. We observe that in both GCP
and Azure, inter-cloud links are slower than intra-cloud links.
As Azure has no service limit for egress bandwidth, we see
the fastest intra-cloud links achieve up to the NIC capacity
of 16 Gbps. However, both GCP and AWS encounter egress
throttling at 7 Gbps and 5 Gbps respectively.

A natural question is how frequently the throughput grid
must be re-measured. Fig. 4 visualizes achieved throughput
from AWS us-west-2 and GCP us-east1-b taken every 30
minutes over an 18 hour timespan. Throughput is very stable

over time for both inter-cloud and intra-cloud routes from
AWS us-west-2. Routes from GCP us-east1-b to AWS
destinations is similarly very stable but intra-cloud routes
to GCP destinations are less stable. Regardless, the overall
rank order of regions by throughput remains mostly consistent
over medium-term timescales. Thus, it should be sufficient to
profile networks relatively infrequently (i.e. every few days).
In practice, this information could be collected by third-party
service, or measured via active probing along live transfers.

3.3 Skyplane’s data plane
Skyplane’s data plane executes data transfers using the plan
computed by Skyplane’s planner. Ephemeral VMs for a sin-
gle transfer, called “gateways,” are provisioned in the source
region, destination region, and overlay regions for a transfer
plan. Each source gateway reads a small shard of data from
the object store and transfers data via intermediate gateways
to the destination where the shard is written.

Skyplane reads data from an object store in the source
cloud region and writes data to an object store in the destina-
tion cloud region. We focus on the object stores provided as a
service by AWS S3, Azure Blob Storage, and Google Storage.
Unlike a traditional overlay network, there is no central Sky-
plane service that allocates resources to each user from a pool
of “Skyplane resources.” Instead, Skyplane can be understood



as a local service run by each user that is invoked when an
application needs to transfer data. Skyplane directly allocates
cloud resources on the user’s behalf when processing a job,
and manages those resources to transfer the user’s data across
cloud regions. This allows Skyplane to allocate and manage
each user’s resources according to their cost and performance
objectives, independently from the cloud providers’ existing
data transfer services, while relying on clouds to offer a large
pool of resources and manage isolation between users.

4 Principles of Skyplane’s planner

Skyplane’s planner2 is responsible for developing a plan for
transferring data across the wide area to complete an object
transfer job submitted by a user or their application (Fig. 5).
This plan describes the overlay path and the amount of cloud
resources to allocate along that path to facilitate the transfer.

Skyplane’s planner supports two modes:
Cost minimizing: The planner will minimize cost subject to
an application-specified throughput constraint.
Throughput maximizing: The planner will maximize
throughput subject to an application-specified cost constraint.

As we will describe in §5, Skyplane finds the optimal plan
by formulating it as an Mixed-Integer Linear Program (MILP)
and using a fast but exponential-time solver. This section de-
scribes the degrees of freedom available to the optimizer to
navigate the price-performance trade-off for the user’s speci-
fied constraint. Our goal is to describe what aspects of the plan
are at the planner’s disposal, justify why it is reasonable to
vary those aspects of the plan, and describe certain techniques
available to the planner to manage the price-performance
trade-off. Note that the planner is not directly programmed to
use these techniques; they are merely patterns that it discovers
in the course of finding the optimal MILP solution.

4.1 Achieving low instance and egress costs
That bandwidth costs dominate the cost of data transfer (§2)
is both a challenge and an opportunity for Skyplane. It is
an opportunity because it allows Skyplane to be competitive
with the price of using data transfer tools provided directly
by the cloud providers (e.g. AWS DataSync, AzCopy, GCP
Cloud Transfer Service), as those tools incur bandwidth costs
but not instance costs. It is a challenge for Skyplane because
it implies that, used naïvely, indirect paths are much more
expensive than direct paths. This is because egress bandwidth
is charged for each hop along the path. For example, for a path
A →C → B, the bandwidth cost must be paid for both A →C
and C → B, which could be double the cost of transferring
over the direct path. As a result, it is crucial for Skyplane’s
optimizer carefully manage egress transfer costs.

2Explore Skyplane’s planner at https://optimizer.skyplane.org

Job
src/dst

regions, etc. Data
Transfer
Plan

Price Grid Throughput
Grid

User Constraint
e.g., throughput >= x

Skyplane
Planner

Figure 5: Skyplane’s planner considers throughput and cost
constraints from the user along with per-cloud price informa-
tion and an inter-region throughput profile grid to determine
the optimal data transfer plan.

4.1.1 Choosing the relay region

One way for Skyplane to manage the additional cost associ-
ated with indirect paths is to carefully choose the relay region
C to minimize this cost. For example, suppose that a user
needs to transfer an object from AWS us-west-2 (region
A) to Azure UK South (region B). The direct path A → B
would require the user to pay $0.09 per GB, the cost of band-
width leaving AWS’ network. If the relay region C is chosen
in us-central-1 or us-east-1, then the overall bandwidth
price will only increase slightly; while the C → B transfer
still incurs $0.09 per GB, as data is leaving AWS’ network,
the A → C bandwidth only costs $0.02 per GB, as it is an
intra-continental transfer within the cloud provider’s network.
Skyplane’s planner can use the throughput and price grids to
identify relay regions that improve the performance of the
transfer while minimizing additional bandwidth costs.

4.1.2 Combining multiple paths

Another way to manage the cost of indirect paths is to split the
data transfer over multiple paths, in order to make fine-grained
trade-offs between price and performance. For example, sup-
pose that Skyplane identifies a high-bandwidth indirect path,
but that the path is more expensive than the user’s price ceil-
ing. Skyplane can still benefit partially from that indirect
path by sending part of the data over that path, at higher cost,
and the remaining data over the direct path A → B, at lower
cost. Thus, Skyplane may average the price and performance
of multiple paths, when doing so allows Skyplane to more
optimally satisfy the user’s constraints.

4.2 Parallel TCP for high bandwidth

Skyplane uses parallel TCP connections—that is, bundles of
TCP connections—to achieve high goodput over a chosen
path. This is a well-known technique for achieving good per-
formance, particularly for wide-area transfers [1, 59]. Our
Skyplane implementation uses up to 64 outgoing connections
for each VM instance, as we empirically measured that using

https://optimizer.skyplane.org


additional connections typically resulted in diminishing ben-
efits in aggregate goodput. When collecting measurements
for the throughput grid, we make sure to use 64 parallel con-
nections to measure the achievable TCP goodput for each
ordered pair of regions.

It is known that using multiple TCP streams in parallel may
cause an application to obtain more than its “fair share” of
bandwidth [25, §A.1], particularly in contexts where networks
are running at nearly 100% utilization [36]. Our view is that,
despite this, it is acceptable to use multiple TCP connections
in parallel in the context of Skyplane. There are three reasons
for this. First, it is common for applications to use parallel
TCP, including for workloads like bulk data transfer [1, 44].
It is important for Skyplane to appropriately compete with
such applications for limited bandwidth. Second, the user
pays the cloud provider for bandwidth, both in the form of the
bandwidth price (total amount transferred) and the instance
price (rate at which data can be transferred), and it is natural
for users to be able to make use of the bandwidth that they
pay for. Third, cloud providers control the datacenter network,
and can shape traffic in the presence of congestion to ensure
that each customer gets a fair share of bandwidth.

4.3 Multiple VMs for high bandwidth
For a given overlay path, Skyplane must allocate sufficient
resources along the path to achieve high bandwidth. However,
the achievable outgoing bandwidth from a VM instance is
limited, as described in §2.

Therefore, Skyplane may allocate multiple VM instances
at certain regions along the path, to increase aggregate data
transfer rate of the VMs at each region. Although simply us-
ing larger VMs may seem like a viable alternative, it is less
effective than using multiple instances due to per-instance
bandwidth limits. Skyplane uses a fixed VM size, and its plan-
ner chooses how many instances to allocate in each region,
under the assumption that TCP goodput scales linearly with
the number of allocated VM sizes.

It may seem that Skyplane can achieve an arbitrarily high
bandwidth by spawning many instances in each region. Un-
fortunately, this simple strategy does not work because cloud
resources are not perfectly elastic. The finite capacity for VMs
in a datacenter is passed down to cloud customers in the form
of service limits, which limit the number of VM instances,
and therefore the amount of network bandwidth, that users
can allocate in each region. While users can request limit
increases, these are ultimately subject to resource availability.
To model this, Skyplane’s planner takes into account a limit
on the number of instances that a user can allocate per region.

5 Finding optimal transfer plans

Skyplane’s planner searches for cost-efficient high-throughput
transfer plans that jointly specify the overlay path, TCP con-

Variables
F ∈ R|V |×|V |

+ Throughput grid
N ∈ Z|V |

+ VMs per region
M ∈ Z|V |×|V |

+ TCP conn. per region
Constraint: goal throughput

TPUT GOAL ∈ R|V |×|V |
+ User’s desired throughput

Constants: provider limit
LIMITlink ∈ R|V |×|V |

+ Throughput grid limit
LIMITconn ∈ Z|V |×|V |

+ TCP connection limit
LIMITingress ∈ Z|V |

+ VM limit
LIMITegress ∈ Z|V |

+ Egress bandwidth limit
Constants: provider cost

COSTegress ∈ R|V |
+ Egress cost ($/Gbit)

COSTVM ∈ R|V |
+ VM cost ($/s)

Table 1: Symbol table for Skyplane’s ILP formulation.

nections between regions and VMs to provision per region.
At the core of Skyplane’s planner is an optimizer that finds

the optimal plan using off-the-shelf Linear Programming (LP)
solvers. We formalize the constraints of our problem as Mixed
Integer LP (MILP) which can quickly be solved in under 5
seconds with an open-source solver. The problem can be
further relaxed into a continuous LP which is solvable in
worst-case polynomial time via interior point methods [39].

Independently optimizing for each variable then combining
partial solutions would not guarantee a globally optimal solu-
tion. It is therefore important that Skyplane’s planner models
all variables in an integrated search space to obtain provably
optimal data transfer plans.

5.1 Cost minimizing overlay paths

Flow networks can naturally represent overlay networking
topologies like those used by Akamai [58]. We start with a
min-cost flow problem. The following primal LP finds the
optimal flow matrix F ∈R|V |×|V |

+ for a network topology graph
G = (V,E) where nodes represent regions and edges are links:

arg min
F

⟨C,F⟩

subject to ∑(c,v)∈E Fc,v ≥ TPUT GOAL

∑(u,v)∈E Fu,v = ∑v,w Fv,w ∀v ∈V −{s, t}

0 ≤ F ≤ LIMITlink

(1)

where s and t are the source and destination regions,
LIMITlink ∈ R|V |×|V |

+ is the maximum capacity for each link
and C ∈ R|V |×|V |

+ is the cost per unit of bandwidth between
regions. We use the same notation for matrix and vector inner
products: ⟨C,F⟩= ∑u,v Cu,vFu,v.



5.1.1 Objective: Minimize cost from egress and VMs

Min-cost flows do not accurately reflect the cost of transfers
in the cloud. The total cost of a transfer in Skyplane includes
egress cost and VM cost. Note that this objective is not linear;
we present a linear reformulation in Sec. 5.1.1. We present
the full objective is in the in Equation 4a.

Modeling egress cost Unlike physical networks, virtual
networks in the cloud will charge the same amount if 1GB
of data is sent at 1 Mbps or 10 Gbps. Transfers are priced
according to egress volume ($ per GB, COSTegress) rather than
bandwidth ($ per Gbps). We can update the cost function to
instead model the transfer cost by first computing how much
the overlay path costs to run per unit time and then scale that
by the runtime for a transfer. We denote the total volume of
the transfer as VOLUME. Total egress cost is then:

⟨F,COSTegress⟩︸ ︷︷ ︸
Egress cost per s

∗VOLUME÷∑v∈V Fs,v︸ ︷︷ ︸
Transfer time

(2)

Modeling VM cost Multiple VMs can increase aggregate
bandwidth as discussed in Sec. 4.3. To optimally trade-off
parallel VMs with the overlay, we introduce a new decision
variable N ∈ Z|V |

+ that models the number of instances use
to transfer data per region. VM count per region may vary
due to asymmetric egress and ingress limits. To accurately
consider transfer costs from VMs, we add the the following
instance cost expression to Equation 2 where COSTVM is a
vector containing the cost per second per VM in each region:

⟨N,COSTVM⟩︸ ︷︷ ︸
VM cost per s

∗VOLUME÷∑v∈V Fs,v︸ ︷︷ ︸
Transfer time

(3)

Linear reformulation of the objective As written, the ob-
jective in Equation 4a is not linear due to a product of vari-
ables between F and N. By reformulating the problem to in-
stead consider finding a plan that provides exactly TPUT GOAL
(instead at least), the runtime for the transfer can be reduced
to a constant VOLUME÷ TPUT GOAL.

5.1.2 Constraints: Cloud provider service limits

Resources are not infinite at cloud regions; providers limit the
number of VMs that a user may provision and in some cases,
providers may throttle the performance of ingress and egress.

Per VM ingress and egress limits AWS and GCP each
throttle egress from their clouds via SDN policies. For AWS,
instances with 32 cores or less are limited to 5 Gbps. For
GCP, individual flows are limited to 3 Gbps and total egress is
service limited to 7 Gbps. Ingress is bottlenecked by VM NIC
bandwidth. We constrain the maximum ingress bandwidth
per VM to LIMITingress via Constraint 4f and the maximum
egress bandwidth per VM to LIMITegress via Constraint 4g.

Constraining TCP connections Using parallel TCP con-
nections is a well known approach to improve WAN perfor-
mance as discussed in Section 4.2. Yet, bandwidth does not
scale linearly with connections (Figure 9a). We introduce a
decision variable M ∈ Z|V |×|V |

+ representing the number of
connections between a pair of regions (not per VM pair).
Constraint 4b ensures M is constrained by N and LIMITconn

(typically 64 per VM). We then limit the total incoming and
outgoing connections with Constraints 4i and 4h.

Per-region VM limits We introduce the variable N ∈ Z|V |
+

to denote the number of VMs per region. N must be under the
global instance cap in Constraint 4j. The optimizer linearly
scales the maximum number of egress TCP connections per
region by the number of VMs provisioned in each region.

5.1.3 Continuous relaxation of MILP

To improve solve times, N and M are relaxed into real valued
variables N ∈ R|V |

+ and M ∈ R|V |×|V |
+ . Rounding variables

down performs comparably to randomized rounding with
solutions ≤ 1% from optimal. The relaxed problem has worst
case polynomial time complexity [39].

5.1.4 Full formulation of the cost optimal solver

All variables and constants are listed in Table 1. The full
formulation of Skyplane’s optimizer is:

arg min
F, N
M

VOLUME

TPUT GOAL

(
⟨F,COSTegress⟩ + ⟨N,COSTVM⟩

)
(4a)

subject to

F ≤(LIMITlink ⊙M)÷LIMITconn (4b)

∑v∈V Fs,v ≥ TPUT GOAL (4c)

∑u∈V Fu,t ≥ TPUT GOAL (4d)

∑u∈V Fu,v = ∑u∈V Fv,u ∀v ∈V −{s, t} (4e)

∑u∈V Fu,v ≤ LIMITingress
v ∗Nv ∀v ∈V (4f)

∑v∈V Fu,v ≤ LIMITegress
u ∗Nu ∀u ∈V (4g)

∑v∈V Mu,v ≤ LIMITconn ∗Nv ∀u ∈V (4h)

∑u∈V Mu,v ≤ LIMITconn ∗Nu ∀v ∈V (4i)

Nv ≤ LIMITV M ∀v ∈V (4j)

5.2 Throughput maximizing overlay paths
Directly solving for a throughput maximizing path under a
cost ceiling is non-trivial as we cannot use the linear reformu-
lation of the cost objective. We can approximate a solution by
solving for the minimum cost transfer plan at a range of many
throughput goals. The result of this procedure is a Pareto



frontier curve (as shown in Fig. 9c). A throughput maximiz-
ing solution can be extracted from this curve. The quality of
approximate solution will depend on how many samples are
used. A single AWS c5.9xlarge instance can evaluate 100
samples in under 20 seconds.

6 Implementation of Skyplane

We implemented Skyplane in Python 3. Skyplane’s planner
uses the proprietary Gurobi library to solve MILP instances
(used in our evaluation), but the Coin-OR library can be used
instead to avoid this dependency. Our implementation cur-
rently supports the three major cloud providers: Amazon Web
Services, Microsoft Azure, and Google Cloud Platform.

We use m5.8xlarge instances on AWS, as smaller VM
sizes were subject to burstable networking performance,
which we wished to avoid [4, 7]. For consistency, we
used Standard_D32_v5 instances on Microsoft Azure and
n2-standard-32 instances on Google Cloud.

A user initiates a transfer from their application with the
Skyplane client. The client provisions VMs in each region
according to the transfer plan and runs the Skyplane gateway
program on each VM. The gateway is responsible for actu-
ally reading from source object stores, relaying data through
overlay regions and writing to destination object stores.

While transfer time is dominated by network throughput,
the time to spawn gateway VMs contributes to the transfer
latency. To minimize unnecessary bloat in VM images, we
use compact OSes such as Bottlerocket [3] and package de-
pendencies via Docker.

Skyplane assumes that objects are broken up into small
chunks of approximately equal size. Applications can often do
this without significant burden; for example, machine learning
applications store data as TFRecords, which are easy to split
into small chunks. This allows Skyplane to read and write
data quickly from and to cloud object stores, by issuing many
read/write operations in parallel to different chunks.

To mitigate the impact of straggler connections, Skyplane
dynamically partitions data across TCP connections as they
become ready to accept more data. This is in contrast to tools
like GridFTP [1], which assign data blocks to connections
in a round-robin fashion. The downside is that, for plans
that use multiple overlay paths, the amount of data sent on
each path may deviate from the targets computed at planning
time, which could cause the actual cost of transferring data to
deviate from the cost predicted by Skyplane’s planner.

To avoid overflowing buffers at relay regions, Skyplane
uses hop-by-hop flow control to stop reading data from incom-
ing TCP connections when a VM’s queue of chunks reaches
capacity. Bufferbloat-type problems [28] are not a concern
for Skyplane, with regard to queued chunks, as we pipeline
transfers to optimize for throughput instead of latency.

7 Evaluation

To evaluate Skyplane, we investigate transfer time and price.
We will sometimes use transfer throughput as a proxy for
transfer time. In our price calculations, we include both in-
stance cost and egress cost.

7.1 Experimental setup

We evaluate Skyplane with 20 AWS regions, 24 Azure regions
and 27 GCP regions. For all experiments, we use public IP
addresses attached to the VMs for transferring data. In some
cases, one can achieve better performance for intra-cloud
overlay hops by using private IP addresses assigned to each
VM. For GCP this yields higher performance; for AWS and
Azure it may yield higher performance, but requires peering
virtual networks which incurs additional fees.

Furthermore, Azure and GCP allow one to select network
tiers to control whether data is transferred via the cloud
provider’s network or via the public Internet. The Skyplane
prototype utilizes external IPs over standard network tiers.
That said, Skyplane is not incompatible with optimizations
like VPC peering or hot-potato routing tiers to reduce cost
and improve performance which we leave to future work. We
use the CUBIC congestion control protocol in experiments.

7.2 How much faster is Skyplane than existing
data transfer solutions?

Existing cloud providers offer data transfer tools such as AWS
DataSync, GCP Storage Transfer, and Azure AzCopy for low-
cost transfers of bulk data into their respective clouds. These
tools do not disclose what mechanisms they use to transfer
data—for example, the number of VMs and TCP connections
(if any) used for a transfer, or the QoS (if any) associated with
the network traffic. When evaluating Skyplane, we restrict
Skyplane to use at most 8 VMs in each region. This is con-
servative; for example, on equalizing $/GB for some routes,
Skyplane could provision up to 262 VMs per region within
DataSync’s service fee. Moreover, while these services only
support data transfer into their respective clouds, Skyplane
supports data transfer between every region pair.

We consider transferring the training and validation set
for ImageNet [23]. We specifically use the TFRecords as
generated by Google as part of the Cloud TPU benchmark
example [23]. We evaluate flows between regions within a sin-
gle cloud (intra-provider) and between clouds (inter-provider).
We expected that data transfer within each cloud provider (e.g.,
between AWS’s us-east-1 and AWS’s us-west-1) to per-
form well as they have full visibility into their networks and
can utilize private interfaces with higher performance than
over public API. For example, Azure Blob Storage throttles
per-object reads for third-party VMs [50]. Our experiments



0 100 200 300
Transfer Time (s)

AWS ap-southeast-2
to AWS eu-west-3

AWS ap-northeast-2
to AWS us-west-2

AWS us-east-1
to AWS us-west-2

AWS eu-north-1
to AWS us-west-2

240s
52s 

176s
60s 

143s
53s 

110s
62s 

AWS DataSync Skyplane

(a) AWS DataSync comparison

0 100 200 300
Transfer Time (s)

AWS ap-northeast-2
to GCP us-central1

AWS us-east-1
to GCP us-west4

Azure koreacentral
to GCP na-northeast2

GCP europe-north1
to GCP us-west4

308s
61s 

284s
55s 

217s
63s 

105s
57s 

GCP Data Transfer Skyplane

(b) GCP Storage Transfer comparison

0 20 40 60
Transfer Time (s)

GCP sa-east1
to Azure koreacentral

Azure eastus
to Azure koreacentral

AWS sa-east-1
to Azure koreacentral

AWS us-east-1
to Azure westus

55s 
30s 

40s 
38s 

40s 
30s 

29s 
19s 

Azure AzCopy Skyplane

(c) Azure AzCopy comparison

Figure 6: Comparison to cloud transfer systems: The thatch pattern in each bar represents the storage I/O overhead.

did observe this behavior. However, Skyplane benefits from
parallelizing the transfers.

We compare against AWS DataSync, GCP Storage Trans-
fer and Azure AzCopy in Fig. 6. We evaluated Skyplane
with a cost budget cap that is lower than the service fee for
cloud transfer services in all our experiments. For each source-
destination pair, we additionally measured the time to transfer
procedurally-generated data using Skyplane; this allows us
to break out the overhead of reading and writing to cloud
storage as a “thatched” region in each bar. Skyplane signifi-
cantly outperforms AWS DataSync and GCP Cloud Transfer
in all configurations. In certain cases, Azure AzCopy performs
about as well as Skyplane. We chose the koreacentral re-
gion because we expected the greatest improvements from
the overlay in that region; however, storage overheads (the
“thatched” regions of the bars), not networking overheads,
dominated the runtime. It is possible that AzCopy avoids the
Azure Blob Storage I/O overhead that dominates Skyplane’s
transfer time by leveraging Azure’s Copy Blob From URL
API call to download data directly into the servers running
Azure Blob Storage [11].

7.3 How much faster are the overlay paths?
The planner optimally explores the trade-off between im-
proved throughput and cost for cloud data transfers. We ex-
plore solving for the optimal transfer path between all pairs
of clouds regions between all cloud providers. We evaluated
22 AWS regions, 23 unrestricted Azure regions and 27 GCP
regions which leads to 5,184 possible replication routes. It
would be too expensive to transfer a large amount of data
along each path in order to measure the empirical achieved
throughput; therefore we use the planner to generate a plan
and compare the resulting plan with the direct path, both in
terms of expected throughput and cost. We compute predicted
costs for transferring a 50 GB dataset between each possible

source and destination. We report the speedup relative to Sky-
plane with a direct connection between each set of instances.
Notice that the baseline is itself an ablation of Skyplane and
it generally outperforms existing cloud transfer services to
begin with (see §7.2).

The results are shown in Fig. 7. For each pair of source
and destination clouds, we show distribution of predicted
throughputs across region pairs, both with Skyplane’s planner
restricted to the direct path and allowing Skyplane’s plan-
ner to use overlay paths. The results show that Skyplane’s
overlay routing meaningfully improves achievable throughput
between cloud regions. Note that transfers out of AWS cannot
exceed 5 Gbps and transfers leaving GCP cannot exceed 7
Gbps due to these cloud providers’ caps on egress bandwidth.

7.4 Where are transfer bottlenecks?

To understand how the overlay improves throughput, we char-
acterize the fraction of transfers that are bottlenecked at each
location. In Fig. 8, we visualize the percentage of transfers
from §7.3 that were bottlecked at a VM in the source region,
the network link leaving the source region, a VMs in optional
overlay regions, a network links leaving an overlay region,
and a VM in the destination region. We consider a particular
location to be a bottleneck if utilization is over 99%. Multiple
locations may simultaneously be a bottleneck for one transfer.

For Skyplane with overlay routing disabled, the network
link from the source to the destination region is the most
common bottleneck for transfers. In a small set of cases, the
source VM is a bottleneck for the transfer. Generally, the
direct path is not fast enough to saturate the maximum egress
bandwidth limit for a VM. The overlay shifts source link
bottlenecks by reducing the number of transfers bottlenecked
by the source link by 32%. The bottleneck shifts to the source
VM or in some cases a network link leaving an overlay region.



0 1 2 3 4 5
Throughput per VM (Gbps)

0

2

D
en

si
ty

AWS to AWS

0 1 2 3 4 5
Throughput per VM (Gbps)

0

2

4

D
en

si
ty

AWS to Azure
Skyplane without overlay Skyplane

0 1 2 3 4 5
Throughput per VM (Gbps)

0

2

4

D
en

si
ty

AWS to GCP

0 2 4 6 8
Throughput per VM (Gbps)

0.0

0.2

D
en

si
ty

Azure to AWS

0 2 4 6 8 10 12
Throughput per VM (Gbps)

0

1

D
en

si
ty

Azure to Azure

0 2 4 6 8 10 12
Throughput per VM (Gbps)

0.0

0.1

0.2

D
en

si
ty

Azure to GCP

0 2 4 6
Throughput per VM (Gbps)

0.0

0.5

D
en

si
ty

GCP to AWS

0 2 4 6
Throughput per VM (Gbps)

0

1

D
en

si
ty

GCP to Azure

0 2 4 6
Throughput per VM (Gbps)

0

1

D
en

si
ty

GCP to GCP

Figure 7: Ablation of predicted overlays: Overlay routes improve throughput per VM instance. We visualize the distribution of
predicted throughput by the planner with all optimizations enabled (Skyplane) and with all optimizations except for overlay
routing (Skyplane without overlay). The AWS and GCP egress limits are displayed with a dashed line.

Figure 8: Transfers bottlenecked at each location: For trans-
fers in Fig. 7, we visualize what percentage of transfers were
bottlenecked at various locations. Enabling the overlay shifts
bottlenecks from the network to the VM.

7.5 Skyplane microbenchmarks

Impact of parallel TCP connections Fig. 9a shows the im-
pact of varying the number of parallel TCP connections used
to transfer data between VMs. For this experiment, the source
VM was located in AWS ap-northeast-1 and the destina-
tion VM was located in AWS eu-central-1. Skyplane trans-
fers 32 GB of synthetic, procedurally-generated data in these
experiments to avoid incurring object store I/O overheads
and thereby isolate network performance. The black dashed
line shows the expected throughput, assuming that bandwidth
scales linearly with the number of parallel TCP connections
up to AWS’ 5 Gbps egress cap. The blue line shows Sky-
plane’s achieved throughput, and the green line uses Sky-
plane’s achieved throughput using the BBR congestion con-

trol algorithm (used only this experiment). For this experi-
ment, the source VM was located in AWS ap-northeast-1
and the destination VM was located in AWS eu-central-1.
Skyplane’s achieved throughput plateaus below the 5 Gbps
egress cap, and 64 connections is enough to come close.

Impact of parallel VMs Fig. 9b shows the impact of us-
ing multiple VMs in each region to achieve higher aggre-
gate throughput. The black dashed line shows the expected
throughput, assuming that bandwidth scales linearly with the
number of VMs. Although Skyplane’s performance is signifi-
cantly less than the expected throughput for a large number
of gateways, the graph shows that using parallel VMs is an
effective way for Skyplane to scale its aggregate bandwidth.
Additionally, using parallel VMs is a particularly valuable
tool in the context of inter-cloud transfers, as Skyplane can
use multiple VMs in one cloud provider to circumvent the
egress limit. For example, for an overlay hop from an AWS
region to an Azure region, one may allocate many instances
in AWS but few in Azure, to account for AWS’ egress cap.

Trade-off between cost and throughput Fig. 9c shows
the impact on overlay path throughput as the price bud-
get is varied. We adjusted the cost budget afforded to
the planner (x-axis), and plot the throughput predicted by
the planner for the output plan (y-axis). We show three
routes where the overlay benefits are considerable (Azure
westus to AWS eu-west-1), good (GCP asia-east1-a to
AWS sa-east-1) and minimal (AWS af-south-1 to AWS



0 20 40 60 80 100 120
Number of connections

0

1

2

3

4

5

Th
ro
u
g
h
p
u
t
(G

b
p
s)

Skyplane (BBR)
Skyplane (CUBIC, default)
Expected throughput

(a) TCP connections versus throughput

0 4 8 12 16 20 24
Number of gateways

0

20

40

60

80

Th
ro
u
g
h
p
u
t
(G

b
p
s)

Skyplane
Expected throughput

(b) Number of gateway VMs versus throughput (c) Predicted planner throughput versus cost

Figure 9: Skyplane ablations: We evaluate the impact of parallel TCP connections, parallel gateway VMs and overlay cost.

Figure 10: Scaling VMs versus overlay: In situations where
the direct path is slow, the overlay is faster than simply scaling
the number of VMs used alone.

ap-southeast-2). As the cost budget increases, Skyplane
uses increasingly complex overlay topologies, adding new
overlay paths as the instance limit (1 VM, in this case) is
saturated in each region. Each elbow in the plot (e.g. 1.2× for
the Azure to AWS route) represents a point where Skyplane
adds a new overlay route via a faster but more costly region.
At some point, the planner cannot increase throughput further
as the overlay network is saturated.

Is it better to use VMs to form overlay paths or parallelize
the direct path? Given a limited number of VMs (§4.3),
a natural question is whether it is better to use those VMs
to form overlay paths or to parallelize the direct path. In
Fig. 10, we evaluate Skyplane with and without the overlay
enabled for various numbers of VMs in the context of an
inter-continental transfer and an intra-continental transfer. For
the inter-continental transfer, using the VMs with overlays
enabled provides a 2.08× geomean speedup compared to
using those VMs to parallelize the direct path. However, for
the intra-continental transfer, there is little benefit to using
VMs in overlay paths (1.03× geomean speedup).

Table 2: Comparison with academic baselines: Skyplane
outperforms RON’s path selection heuristic implemented in
Skyplane [8].

Method Time Throughput Cost

GCT GridFTP [1, 10] (1 VM) 133s 1.03 Gbps $1.40
Skyplane (1 VM, direct) 73s 1.71 Gbps $1.40

Skyplane w/ RON routes (4 VMs) [8] 21s 6.02 Gbps $2.27
Skyplane (cost optimized, 4 VMs) 32s 3.88 Gbps $1.56
Skyplane (throughput optimized, 4 VMs) 16s 8.07 Gbps $1.59

7.6 Comparison against academic baselines

In Table 2, we compare Skyplane with RON [8] and the
community-maintained fork [10] of GridFTP [1] for a 16 GB
data transfer from Azure East US to AWS ap-northeast-1.
To isolate network throughput from I/O overheads, we bench-
mark the transfers without object stores (VM to VM only).

We use the open-source GCT fork of GridFTP [10]. Al-
though GCT GridFTP theoretically supports striped transfers
across multiple machines, we were unable to find a supported
non-commercial implementation. To make a fair comparison,
we run both GCT GridFTP and Skyplane with a single VM
per region. Skyplane is 1.6× faster than GCT GridFTP.

We implement RON’s path selection heuristic in Skyplane
to compare overlays between RON and Skyplane. Our results
show that Skyplane has better cost and throughput than RON.
Skyplane with routes from RON’s path selection heuristic
achieves 3.5× higher throughput than Skyplane with a single
VM but at 62% cost overhead. Skyplane’s planner instead
finds overlay paths with up to 4.7× higher throughput than
the direct path within a 14% cost overhead.

8 Related Work

Skyplane builds on the overlay network literature [8, 16, 58].
As discussed in §1, Skyplane adapts classical overlays to the
cloud setting, accounting for the price of network bandwidth



and leveraging the elasticity of cloud resources. CRONets [16]
briefly discusses cost, but focuses on comparing cloud-based
options to private leased lines. Unlike Skyplane, it does not
discuss how to manage the cost of cloud resources. Lai et
al. [46] find relay regions improve throughput in AWS when
utilizing a single TCP connection but find the 2 Gbps instance
NIC limit from their chosen instance class limits the benefit
of overlay paths. CloudCast [56] examines the use of trian-
gle overlays in the cloud to reduce network latency while
Skyplane examines throughput.

Several existing efforts [27, 49, 55] aim to optimize bulk
data transfers by reducing the amount of data transferred.
Such techniques are complementary to Skyplane; one can
first apply these techniques to reduce the amount of data to
transfer, and then apply Skyplane’s techniques to transfer that
reduced data efficiently. Unlike Skyplane, these works do not
use cost when selecting the network path to use for a transfer.

Another line of research aims to improve bulk data transfers
by improving resource management. GridFTP [1] is a tool for
wide-area transfers that techniques such as using multiple ma-
chines and TCP connections. GridFTP sends all data over the
direct path and does not utilize overlays. Khanna et al. [40]
explore application of network overlays to GridFTP but do
not consider elasticity and egress price in the cloud. Other
solutions, like PSockets [59], also use parallel TCP connec-
tions for high bandwidth. Pied Piper [14] also explored how
cloud resource elasticity could be used to improve cloud data
transfers, but utilize a different mechanism than Skyplane.

There have been decades of improvements and optimiza-
tions at the transport layer to make TCP perform better in
large-BDP settings within TCP itself [2, 15, 17, 33], while
others concern operating system support for TCP [20, 24, 48].
Improvements to TCP are complementary to Skyplane. Cod-
edBulk [61] uses network coding to complete bulk-transfer
multicast jobs quickly [61]. Another set of research [18,63,64]
investigates how to schedule urgent and non-urgent bulk trans-
fers to meet a transfer’s deadline. None of these techniques
consider the cost of transferring data in the cloud.

Traffic engineering (TE) systems, like Google’s B4 [35,36]
and BwE [43] and Microsoft’s SWAN [34], Cascara [57], and
BlastShield [42], are used internally by cloud providers to
navigate the cost-performance trade-off in their wide-area
networks. The precise nature of the trade-off differs from
Skyplane in two ways. First, TE systems consider costs in
terms of the bandwidth provisioned (e.g., the cost of installing
long-distance cables [36], or the 95th percentile bandwidth for
peering links [57]). In contrast, Skyplane considers cost from
the perspective of a cloud customer, where the cost depends on
the volume and not bandwidth of data transferred. Second, TE
systems like Cascara [57] assume a static topology and aim
to reallocate bandwidth to save cost, with a global view of a
single provider’s network. Skyplane optimizes a single user’s
transfer, with the ability to use overlay regions in multiple
cloud providers’ networks.

Skyplane has similarities to Content Delivery Networks
(CDNs) [58], most notably in that both make use of overlay
networks. However, Skyplane’s focus is different from CDNs.
CDNs focus on caching objects near users, in order to provide
low network latency. In contrast, Skyplane focuses on transfer-
ring large amounts of data quickly, with a focus on achieving
high bandwidth rather than low network latency such as in
workloads like ML training and database replication. CDNs
are more suitable for workloads where popular objects need
to be replicated to many regions so that geo-distributed users
can access them with low network latency.

One application of bulk transfers is VM migration [19, 32,
37, 45] that balance VM downtime and bandwidth consumed
when transferring VMs. Supercloud [37] uses a network of
vSwitches in an overlay that maintains TCP connections upon
migration, not to provide high bandwidth at low cost.

Some existing research efforts and commercial products
focus on bulk transfer jobs that are not time-critical. For ex-
ample, Laoutaris et al. [47] propose techniques to reduce the
cost of transferring data for delay tolerant applications.

Cloud providers provide services for bulk transfer, such as
AWS Snowball [62], Azure Data Box [12], and GCP Transfer
Appliance [21], that have users ship their data via physical
drives via the postal service. For sufficiently large transfers,
these services may allow data to be transferred into the cloud
datacenter more quickly than using the Internet.

9 Conclusion

This paper explores how to efficiently transfer data between
cloud regions using cloud-aware overlay networks. Our key
observation is that principles from overlay networks can be
applied to the cloud setting to identify high-quality network
paths that lead to fast transfer times. However, adapting prin-
ciples from overlay networks to the cloud setting requires
consideration of cloud resource pricing, most notably the
egress fees associated with network bandwidth. Skyplane
manages the trade-off between performance and cost when
performing bulk data transfer. It works by accepting a user- or
application-provided constraint on performance and solving
a mixed integer linear program (MILP) to obtain the optimal
data transfer plan. Skyplane can reduce the time to transfer
data by up to 5.0× at minimal additional cost.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Rachee
Singh, for their helpful feedback. We also thank Asim Biswal,
Jason Ding, Daniel Kang, Vincent Liu, Xuting Liu, and Anton
Zabreyko. This work is supported by NSF CISE Expeditions
Award CCF-1730628, NSF GRFP Award DGE-1752814, and
gifts from Amazon, Astronomer, Google, IBM, Intel, Lace-
work, Microsoft, Nexla, Samsung SDS, and VMWare.



References

[1] William Allcock, John Bresnahn, Rajkumar Kettimuthu,
Michael Link, Catalin Dumitrescu, Ioan Raicu, and Ian
Foster. The Globus striped GridFTP framework and
server. In Supercomputing, 2005.

[2] M. Allman, D. Glover, and L. Sanchez. Enhancing TCP
over satellite channels using standard mechanisms. RFC
2488, 1999.

[3] Amazon Web Services. Amazon Bottlerocket OS.
https://aws.amazon.com/bottlerocket, 2022.

[4] Amazon Web Services. Amazon EC2 in-
stance network bandwidth. https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-instance-network-bandwidth.html, 2022.

[5] Amazon Web Services. Aws DataSync: online data
transfer and migration. https://aws.amazon.com/
datasync, 2022.

[6] Amazon Web Services. EC2 on-demand instance
pricing. https://aws.amazon.com/ec2/pricing/
on-demand/, 2022.

[7] Amazon Web Services. General purpose instances.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/general-purpose-instances.html#
general-purpose-network-performance, 2022.

[8] David Andersen, Hari Balakrishnan, Frans Kaashoek,
and Robert Morris. Resilient overlay networks. In SOSP.
ACM, 2001.

[9] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei
Zaharia. Lakehouse: A new generation of open plat-
forms that unify data warehousing and advanced analyt-
ics. In CIDR, 2021.

[10] GCT authors. Grid community toolkit. https://
github.com/gridcf/gct, 2022.

[11] Microsoft Azure. Copy blob from URL.
https://docs.microsoft.com/en-us/rest/
api/storageservices/copy-blob-from-url,
2022.

[12] Microsoft Azure. Microsoft Azure Data Box.
https://azure.microsoft.com/en-us/products/
databox/, 2022.

[13] Microsoft Azure. Scalability and perfor-
mance targets for blob storage. https:
//learn.microsoft.com/en-us/azure/storage/
blobs/scalability-targets, 2022.

[14] Aran Bergman, Israel Cidon, Isaac Keslassy, Noga Rot-
man, Michael Schapira, Alex Markuze, and Eyal Zohar.
Pied Piper: Rethinking Internet data delivery. In CoRR,
2018.

[15] D. Borman, B. Braden, and V. Jacobson. TCP extensions
for high performance. RFC 7323, 2014.

[16] Chris X. Cai, Franck Le, Xin Sun, Geoffrey G. Xie,
Hani Jamjoom, and Roy H. Campbell. CRONets: Cloud-
routed overlay networks. In ICDCS. IEEE, 2016.

[17] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
congestion-based congestion control. In CACM, 2017.

[18] Bin Bin Chen and Pascale Vicat-Blane Primet. Schedul-
ing deadline-constrained bulk data transfers to minimize
network congestion. In CCGrid. IEEE, 2007.

[19] Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. Live migration of virtual ma-
chines. In NSDI, 2005.

[20] David D. Clark. The structuring of systems using up-
calls. In SOSP, 1985.

[21] Google Cloud Platform. Google Cloud trans-
fer appliance. https://cloud.google.com/
transfer-appliance/docs/4.0/overview, 2022.

[22] AzCopy contributors. Azure storage AzCopy. https://
github.com/Azure/azure-storage-azcopy, 2022.

[23] TensorFlow contributors. Training ResNet on
Cloud TPU. https://cloud.google.com/tpu/
docs/tutorials/resnet, 02 2022.

[24] Peter Druschel and Larry L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. In SOSP,
1993.

[25] Sally Floyd and Kevin Fall. Promoting the use of end-
to-end congestion control in the Internet. Trans. Net-
working, 1999.

[26] Forrester/Virtustream. A clear multicloud strategy de-
livers business value.

[27] Sebastian Frischbier, Alessandro Margara, Tobias
Freudenreich, Patrick Eugster, David Eyers, and Peter
Pietzuch. McCAT: Multi-cloud cost-aware transport. In
EuroSys Poster Track, 2014.

[28] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark
buffers in the Internet. CACM, 2012.

https://aws.amazon.com/bottlerocket
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://aws.amazon.com/datasync
https://aws.amazon.com/datasync
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://github.com/gridcf/gct
https://github.com/gridcf/gct
https://docs.microsoft.com/en-us/rest/api/storageservices/copy-blob-from-url
https://docs.microsoft.com/en-us/rest/api/storageservices/copy-blob-from-url
https://azure.microsoft.com/en-us/products/databox/
https://azure.microsoft.com/en-us/products/databox/
https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://cloud.google.com/transfer-appliance/docs/4.0/overview
https://cloud.google.com/transfer-appliance/docs/4.0/overview
https://github.com/Azure/azure-storage-azcopy
https://github.com/Azure/azure-storage-azcopy
https://cloud.google.com/tpu/docs/tutorials/resnet
https://cloud.google.com/tpu/docs/tutorials/resnet


[29] Google Cloud. All networking pricing | Virtual Private
Cloud | Google Cloud. https://cloud.google.com/
vpc/network-pricing, 2022.

[30] Google Cloud. Network bandwidth | Compute Engine
Documentation | Google Cloud. https://cloud.
google.com/compute/docs/network-bandwidth,
2022.

[31] Google Cloud Platform. Storage trans-
fer service. https://cloud.google.com/
storage-transfer-service, 2022.

[32] Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen,
Wenlu Hu, Brandon Amos, Rohit Upadhyaya, Padman-
abhan Pillai, and Mahadev Satyanarayanan. You can
teach elephants to dance: Agile VM handoff for edge
computing. In SEC, 2017.

[33] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A
new TCP-friendly high-speed TCP variant. In SIGOPS,
2008.

[34] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nandury, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In SIGCOMM, 2013.

[35] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and
after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in Google’s software-defined
WAN. In SIGCOMM, 2018.

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Us Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed Software Defined WAN.
In SIGCOMM, 2013.

[37] Qin Jia, Zhiming Shen, Weijia Song, Robbert van Re-
nesse, and Hakim Weatherspoon. Supercloud: Opportu-
nities and challenges. In SIGOPS, 2015.

[38] Srikanth Kandula, Ishai Menache, Roy Schwartz, and
Spandana Raj Babbula. Calendaring for wide area net-
works. In SIGCOMM. ACM, 2014.

[39] N. Karmarkar. A new polynomial-time algorithm for
linear programming. In STOC, 1984.

[40] Gaurav Khanna, Umit Catalyurek, Tahsin Kurc, Rajku-
mar Kettimuthu, P. Sadayappan, Ian Foster, and Joel

Saltz. Using overlays for efficient data transfer over
shared wide-area networks. In Supercomputing, 2008.

[41] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and
Amin Vahdat. Bullet: High bandwidth data dissemina-
tion using an overlay mesh. SOSP, 2003.

[42] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area net-
work traffic engineering with BlastShield. In NSDI.
USENIX, 2022.

[43] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghu-
raman, Nikhil Kasinadhuni, Enrique Cauich Zermeno,
C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia,
Stephen Stuart, and Amin Vahdat. BwE: Flexible, hi-
erarchical bandwidth allocation for WAN distributed
computing. In SIGCOMM, 2015.

[44] James F. Kurose and Keith W. Ross. Computer Net-
working: A Top-Down Approach, chapter 3, page 308.
International 6th edition, 2013.

[45] H. Andrés Lagar-Cavilla, Joseph A. Whitney, Roy
Bryant, Philip Patchin, Michael Brudno, Eyal de Lara,
Stephen M. Rumble, M. Satyanarayanan, and Adin Scan-
nell. Snowflock: Virtual machine cloning as a first-class
cloud primitive. ACM Trans. Comput. Syst., 29(1), feb
2011.

[46] Fan Lai, Mosharaf Chowdhury, and Harsha Madhyastha.
To relay or not to relay for Inter-Cloud transfers? In
HotCloud, 2018.

[47] Nikolaos Laoutaris, Georgios Smaragdakis, Pablo Ro-
driguez, and Ravi Sundaram. Delay tolerant bulk data
transfers on the Internet. In SIGMETRICS, 2009.

[48] Chris Maeda and Brian N. Bershad. Protocol service
decomposition for high-performance networking. In
SOSP, 1993.

[49] Miguel Matos, António Sousa, José Pereira, and Rui
Oliveira. CLON: Overlay network for clouds. In
WDDM, 2009.

[50] Microsoft Azure. Scalability and perfor-
mance targets for blob storage. https:
//docs.microsoft.com/en-us/azure/storage/
blobs/scalability-targets, 2021.

[51] Microsoft Azure. Pricing - bandwidth | Microsoft
Azure. https://azure.microsoft.com/en-us/
pricing/details/bandwidth/, 2022.

[52] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun.
The Akamai network: A platform for high-performance
Internet applications. SIGOPS, 2010.

https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/storage-transfer-service
https://cloud.google.com/storage-transfer-service
https://docs.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://docs.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://docs.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/


[53] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim
Kurose. Modeling tcp throughput: A simple model and
its empirical validation. In Proceedings of the ACM SIG-
COMM ’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’98, page 303–314, New York, NY,
USA, 1998. Association for Computing Machinery.

[54] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low latency geo-distributed data analytics.
In SIGCOMM, 2015.

[55] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S.
Pai, and Michael J. Freedman. Aggregation and degra-
dation in JetStream: Streaming analytics in the wide
area. In NSDI, 2014.

[56] Noga H. Rotman, Yaniv Ben-Itzhak, Aran Bergman, Is-
rael Cidon, Igor Golikov, Alex Markuze, and Eyal Zohar.
CloudCast: Characterizing public clouds connectivity.
CoRR, 2022.

[57] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with CASCARA. In NSDI, 2021.

[58] Ramesh K. Sitaraman, Mangesh Kasbekar, Woody
Lichtenstein, and Manish Jain. Overlay networks:
An Akamai perspective. Advanced Content Delivery,
Streaming, and Cloud Services, 2014.

[59] H. Sivakumar, S. Bailey, and R. L. Grossman. PSock-
ets: The case for application-level network striping for
data intensive applications using high speed wide area
networks. In Supercomputing. ACM/IEEE, 2000.

[60] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In
SIGCOMM, 2001.

[61] Shih-Hao Tseng, Saksham Agarwal, Rachit Agarwal,
Hitesh Ballani, and Ao Tang. CodedBulk: Inter-
datacenter bulk transfers using networkcoding. In NSDI,
2021.

[62] Amazon Web Services. AWS Snowball. https://aws.
amazon.com/snowball, 2022.

[63] Yu Wu, Zhizhong Zhang, Chuan Wu, Chuanxiong Guo,
Zongpeng Li, and Francis C. M. Lau. Orchestrating
bulk data transfers across geo-distributed datacenters.
Trans. Cloud Computing.

[64] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen
Tian, Hao Wang, Haibing Guan, and Ming Zhang. Guar-
anteeing deadlines for inter-datacenter transfers. In Eu-
roSys, 2015.

[65] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Mar-
tin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang,
and Kai Chen. BDS: A centralized near-optimal overlay
network for inter-datacenter data replication. In EuroSys,
2018.

https://aws.amazon.com/snowball
https://aws.amazon.com/snowball

	Introduction
	Background
	Overview of Skyplane
	0.425!Overlay formulation in Skyplane's planner
	Profiling cloud networks
	Skyplane's data plane

	Principles of Skyplane's planner
	Achieving low instance and egress costs
	Choosing the relay region
	Combining multiple paths

	Parallel TCP for high bandwidth
	Multiple VMs for high bandwidth

	Finding optimal transfer plans
	Cost minimizing overlay paths
	Objective: Minimize cost from egress and VMs
	Constraints: Cloud provider service limits
	Continuous relaxation of MILP
	Full formulation of the cost optimal solver

	Throughput maximizing overlay paths

	Implementation of Skyplane
	Evaluation
	Experimental setup
	How much faster is Skyplane than existing data transfer solutions?
	How much faster are the overlay paths?
	Where are transfer bottlenecks?
	Skyplane microbenchmarks
	Comparison against academic baselines

	Related Work
	Conclusion

